Online Analytical Processing Stream Data: Is It Feasible?

نویسندگان

  • Yixin Chen
  • Guozhu Dong
  • Jiawei Han
  • Jian Pei
  • Benjamin W. Wah
  • Jianyong Wang
چکیده

! " # %$& ' ( ! )+*, . ()&$/!0 , ' "# ! & %*,!& .!1 2*,3 !54 .! 6 7 % . ! ) *, '8 9:* ! $+ !&;0! =<> 1*, #* 3? % % @)0 6 &AB; C * # ( */*D-1 4 # *FEG H " ! ! ) H 9 I ' JLK(*=MN . O6 H " *,3& % "P-#)0 6 B % ) Q L 6 *=MR P 1 . *,3& E % ". *,!SO M>% L *, % T ,!0 $/ % T % U ! % ) !V)&$&!0 "W" -0 ,! 4, +8 % "P-X 7 % ! ) D ! )Y*, & % <7 6 D % $ 4 -D . N*,3L ,E ". *,!SJ?ZL*H) " * 1 . N % "P-F4,-F P 1 . "P-0 ". % % " O&*,! 2 $ ! )[ *H9: . %3\*, % ]*,!& ^ ! 2 H _ ` . !0 , _$& a*,3: % % b)0 6 &O; ' I *Cc(dLegfX8 *,!& ` ! ,!0 $1 " 9 %*/" . ! 4/)0 6 CMB , % .* % )0 6 J ij -k ' )l *, ,4, D 90 " F ,! )l F) ! )k3\*, H3\ % H % . 9G*,! ,O: ( ( % " *F9 %*, '* C*,!& ^ ! ,O: H ^) .! *,!0 !0 , _$& ! )V ' ! ! 45*,3( % % m)0 6 n *o , 9G *,9 p EG* & ) D 6 " "P-0 ! 4, B*,3S 0 6 *,! B 6 N H 9 P ` . N*,3L E % ".

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Dimensional Analysis of Data Streams Using Stream Cubes

Large volumes of dynamic stream data pose great challenges to its analysis. Besides its dynamic and transient behavior, stream data has another important characteristic: multi-dimensionality. Much of stream data resides at a multidimensional space and at rather low level of abstraction, whereas most analysts are interested in relatively high-level dynamic changes in some combination of dimensio...

متن کامل

Step-by-Step Regression: A More Efficient Alternative for Polynomial Multiple Linear Regression in Stream Cube

Facing tremendous and potentially infinite stream data, it is impossible to record them entirely. Thus synopses are required to be generated timely to capture the underlying model for stream management systems. Traditionally, curve fitting through Multiple Linear Regression (MLR) is a powerful and efficient modeling tool. In order to further accelerate its processing efficiency, we propose Step...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

In-Stream Big Data Processing

The shortcomings and drawbacks of batch-oriented data processing were widely recognized by the Big Data community quite a long time ago. It became clear that realtime query processing and in-stream processing is the immediate need in many practical applications. In recent years, this idea got a lot of traction and a whole bunch of solutions like Twitter’s Storm, Yahoo’s S4, Cloudera’s Impala, A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002